\(\int \frac {1}{x^2 (a+b \log (c x^n))^2} \, dx\) [78]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 73 \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=-\frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \operatorname {ExpIntegralEi}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right )}{b^2 n^2 x}-\frac {1}{b n x \left (a+b \log \left (c x^n\right )\right )} \]

[Out]

-exp(a/b/n)*(c*x^n)^(1/n)*Ei((-a-b*ln(c*x^n))/b/n)/b^2/n^2/x-1/b/n/x/(a+b*ln(c*x^n))

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {2343, 2347, 2209} \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=-\frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \operatorname {ExpIntegralEi}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right )}{b^2 n^2 x}-\frac {1}{b n x \left (a+b \log \left (c x^n\right )\right )} \]

[In]

Int[1/(x^2*(a + b*Log[c*x^n])^2),x]

[Out]

-((E^(a/(b*n))*(c*x^n)^n^(-1)*ExpIntegralEi[-((a + b*Log[c*x^n])/(b*n))])/(b^2*n^2*x)) - 1/(b*n*x*(a + b*Log[c
*x^n]))

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2343

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log
[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2347

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)), Subst[Int[E^(((m + 1)/n)*x)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}
, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{b n x \left (a+b \log \left (c x^n\right )\right )}-\frac {\int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )} \, dx}{b n} \\ & = -\frac {1}{b n x \left (a+b \log \left (c x^n\right )\right )}-\frac {\left (c x^n\right )^{\frac {1}{n}} \text {Subst}\left (\int \frac {e^{-\frac {x}{n}}}{a+b x} \, dx,x,\log \left (c x^n\right )\right )}{b n^2 x} \\ & = -\frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \text {Ei}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right )}{b^2 n^2 x}-\frac {1}{b n x \left (a+b \log \left (c x^n\right )\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.04 \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=-\frac {b n+e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \operatorname {ExpIntegralEi}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right ) \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2 x \left (a+b \log \left (c x^n\right )\right )} \]

[In]

Integrate[1/(x^2*(a + b*Log[c*x^n])^2),x]

[Out]

-((b*n + E^(a/(b*n))*(c*x^n)^n^(-1)*ExpIntegralEi[-((a + b*Log[c*x^n])/(b*n))]*(a + b*Log[c*x^n]))/(b^2*n^2*x*
(a + b*Log[c*x^n])))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.48 (sec) , antiderivative size = 347, normalized size of antiderivative = 4.75

method result size
risch \(-\frac {2}{x \left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 \ln \left (x^{n}\right ) b +2 a \right ) b n}+\frac {\left (x^{n}\right )^{\frac {1}{n}} c^{\frac {1}{n}} {\mathrm e}^{\frac {-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 a}{2 b n}} \operatorname {Ei}_{1}\left (\ln \left (x \right )+\frac {-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 b \left (\ln \left (x^{n}\right )-n \ln \left (x \right )\right )+2 a}{2 b n}\right )}{b^{2} n^{2} x}\) \(347\)

[In]

int(1/x^2/(a+b*ln(c*x^n))^2,x,method=_RETURNVERBOSE)

[Out]

-2/x/(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c
*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*ln(x^n)*b+2*a)/b/n+1/b^2/n^2/x*(x^n)^(1/n)*c^(1/n)*exp(1/2*(-I*b*Pi
*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*P
i*csgn(I*c*x^n)^3+2*a)/b/n)*Ei(1,ln(x)+1/2*(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(
I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*b*(ln(x^n)-n*ln(x))+2*a)/b/n)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.21 \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=-\frac {{\left (b n x \log \left (x\right ) + b x \log \left (c\right ) + a x\right )} e^{\left (\frac {b \log \left (c\right ) + a}{b n}\right )} \operatorname {log\_integral}\left (\frac {e^{\left (-\frac {b \log \left (c\right ) + a}{b n}\right )}}{x}\right ) + b n}{b^{3} n^{3} x \log \left (x\right ) + b^{3} n^{2} x \log \left (c\right ) + a b^{2} n^{2} x} \]

[In]

integrate(1/x^2/(a+b*log(c*x^n))^2,x, algorithm="fricas")

[Out]

-((b*n*x*log(x) + b*x*log(c) + a*x)*e^((b*log(c) + a)/(b*n))*log_integral(e^(-(b*log(c) + a)/(b*n))/x) + b*n)/
(b^3*n^3*x*log(x) + b^3*n^2*x*log(c) + a*b^2*n^2*x)

Sympy [F]

\[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=\int \frac {1}{x^{2} \left (a + b \log {\left (c x^{n} \right )}\right )^{2}}\, dx \]

[In]

integrate(1/x**2/(a+b*ln(c*x**n))**2,x)

[Out]

Integral(1/(x**2*(a + b*log(c*x**n))**2), x)

Maxima [F]

\[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=\int { \frac {1}{{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(a+b*log(c*x^n))^2,x, algorithm="maxima")

[Out]

-1/(b^2*n*x*log(x^n) + (b^2*n*log(c) + a*b*n)*x) - integrate(1/(b^2*n*x^2*log(x^n) + (b^2*n*log(c) + a*b*n)*x^
2), x)

Giac [F]

\[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=\int { \frac {1}{{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(a+b*log(c*x^n))^2,x, algorithm="giac")

[Out]

integrate(1/((b*log(c*x^n) + a)^2*x^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx=\int \frac {1}{x^2\,{\left (a+b\,\ln \left (c\,x^n\right )\right )}^2} \,d x \]

[In]

int(1/(x^2*(a + b*log(c*x^n))^2),x)

[Out]

int(1/(x^2*(a + b*log(c*x^n))^2), x)